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Abstract - A team of US  Army Corps of Engineers, Omaha 
District and Engineering and Support Center, Huntsville, Jet 
Propulsion Laboratory (JPL), Stanford Research Institute 
(SRI), and Montgomery Watson is currently in  the  process 
of planning and conducting the  largest ever survey  at  the 
Former Buckley  Field (60,000 acres), in Colorado, by using 
SRI airborne, ground penetrating, Synthetic Aperture  Radar 
(SAR). The purpose of this  survey  is  the detection of surface 
and subsurface Unexploded Ordnance (UXO) and in a 
broader sense the  site characterization for  identification of 
contaminated as well as clear areas. In preparation for such a 
large-scale survey, JPL has  been developing advanced 
algorithms and a high-performance  testbed for processing of 
massive amount of expected  SAR data from  this  site. Two 
key requirements of this project are the  accuracy  (in  terms  of 
UXO detection) and  speed of SAR data processing. The  first 
key feature of this  testbed is a large degree of automation 
and a minimum degree of the  need for human  perception in 
the processing to  achieve an acceptable processing rate of 
several hundred acres per  day. For accurate UXO detection, 
novel algorithms have  been developed and  implemented. 
These algorithms  analyze  dual polarized (HH and VV) SAR 
data. They  are  based on the correlation of HH and VV SAR 
data and involve a rather large set of parameters for  accurate 
detection of  UXO. For each specific site, this  set of 
parameters can be optimized by using  ground  truth data 
(i.e.,  known surface and subsurface UXOs). In  this paper, 
we discuss these  algorithms and their successful application 
for detection of surface and subsurface anti-tank mines  by 
using a data set  from Yuma proving Ground, AZ, acquired 
by SRI SAR. 
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1 .  INTRODUCTION 

Recently, much attention has  been  paid to land  mine 
problem as it represents a serious' threat to civilian 
population in several parts of the  world. However, there 
exists another related and perhaps more  widespread 
environmental problem which is  the presence of  the 
Unexploded Ordnance (UXO) in  many countries and in 
particular in USA. There are currently over 9,000 Formerly 
Used Defense Sites (FUDS) in continental USA, some of 
them of vast acreage, which  are  now in public or private 
ownership. Of the 9,000 FUDS, over 2,000 have  been 
identified as having  the  potential  for contamination by  UXO 
and  thus require site remediation. 

A key  and challenging task in site remediation is  the 
detection of the subsurface UXOs. This task is currently 
performed by humans  walking  through  the site and  using 
detection devices such as magnetometer  and gradiometer. 
This is  not  only a dangerous activity,  but  is also extremely 
time consuming, costly, and  inefficient.  In fact, it can cost 
anywhere  between $1,000 and $20,000 per acre depending 
on  the  anomaly  and ordnance concentration, depth, and field 
conditions such as heavy  brush  and steep terrain [l]. Given 
the time  and cost involved in remediation of a large number 
of sites, some of  them  of  vast acreage, novel technologies 
are needed to enable a rapid and cost-effective site survey 
and detection of subsurface UXO. 

Airborne, ground penetrating, SAR has  the potential of  an 
ideal  technology  for a rapid  and cost-effective site survey. 
However,  though it is  being  increasingly  used as an effective 
remote sensing technology, it  has not previously  been 
validated as a viable  tool for subsurface  UXO detection. In 
fact, previous experiments at  Jefferson Proving Ground 
seemed to indicate that  this  technology is not suitable for 
subsurface UXO detection [I]. There are two  main 
challenges in using airborne, ground penetrating, SAR data 
for UXO detection [2] (see also Sec. 2 ): 

I .  Highly  negative signal-to-clutter environment, and 
2. Low-resolution measurement, due to the  small size of the 

class of UXOs of interest with respect to the  SAR 
wavelength resulting in a subpixel target. 

In 1995, US Army Corps of Engineers, Engineering and 
Support Center, Huntsville (CEHNC), JPL, and  SRI 
conducted the largest ever airborne, ground  penetrating 
SAR survey for UXO detection and site characterization a1 a 
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highly  contaminated  FUDS,  the former Camp Croft Training 
Facility in Spartanburg, SC [2,3]. This was a first 
operational validation of a remote  sensing  technology  that 
had never been applied  for a large scale (> 19,000 acres) 
UXO site remediation  activity in the  past.  Not  only was  the 
Camp Croft site of  vast acreage but also  the  extent of OE 
contamination was undocumented and unknown. In addition, 
it presented significant complexity in foliage clutter and 
terrain relief. 

The JPL team,  for  the  first  time, developed effective and 
advanced post-processing algorithms for detection of 
subpixel target in a highly  negative signal-to-clutter 
environment, using  SAR data from Camp Croft [2]. These 
algorithms were  first  successfully  validated  against  ground 
truth data (found  UXOs by walk-through  of  the site) 
provided by the  CEHNC.  Upon  this successful validation, 
they  were  then applied to a survey  of a small area (100 
acres) of Camp Croft. Subsequent inspection  of  this area by 
CEHNC clearly validated  the effectiveness of JPL 
algorithms for  both detection of subsurface UXOs and 
identification of clear areas [4]. JPL’s successful results  of 
this challenging and real-life case study for the first time 
clearly established the airborne, ground penetrating, SAR as 
a viable  remote sensing tool  for a rapid  and cost-effective 
survey of large sites. 

As a result of successful  validation and application on a 
small-scale, the CEHNC has considered several sites 
(representing some of the current site remediation projects at 
CEHNC) for a large-scale application, demonstration, and 
validation of JPL’s technology. Former  Buckley Field, 
Colorado, is  the  first  selected application site. This is a 
60,000 acre FUDS  located on  the  semi-arid  high  plains 
outside Denver. Ordnance remediation at  this site is of major 
and critical importance  because of increasing urban 
development in the area. In preparation for  such a large- 
scale survey, JPL has  been developing advanced algorithms 
and a high-performance  testbed for processing of  massive 
amount of  expected  SAR data from  this site. Two key 
requirements of  this project are the  accuracy  (in  terms of 
UXO detection) and speed  of  SAR data processing. The first 
key feature of this  testbed  is a large degree of automation 
and a minimum degree of  the  need for human perception in 
the processing to achieve an acceptable processing rate of 
several hundred acres per day. For accurate UXO detection, 
novel  algorithms  have  been developed and implemented. 
These algorithms analyze  dual  polarized (HH and VV) SAR 
data. They  are  based on the correlation of  HH  and VV SAR 
data and  involve a rather large set of parameters for accurate 
detection of UXO. For each specific site, this  set of 
parameters can  be  optimized by using  ground  truth data (i.e., 
known surface and subsurface UXOs). In this  paper, we 
discuss these algorithms and  their  successful application for 
detection of surface and subsurface anti-tank mines by using 
a data set  from Yuma proving Ground, AZ, acquired by SRI 
SAR. 

2.  YUMA  SAR  DATA SET 

In July  and October 1995, the MIT Lincoln Laboratory and 
Army Research Laboratory (ARL) conducted a ground 
penetrating radar experiment at  the  U.S.  Yuma Proving 
Ground in Arizona [5]. Three radar  systems, the SRI Folpen 
111, the ARL BoomSAR, and  the  Navy  P-3 collected 
polarimetric data from  both targets and clutter. Some of  the 
targets deployments included a mine field, wire/pipes, and 
missile clones. In this paper, we only consider the data 
collected by SRI airborne Folpen 111 SAR over the deployed 
minefield. 

Figure 1 shows an aerial photography  of  the Philips Drop 
Zone at Yuma  Proving  Ground  wherein  the rectangle 
indicates the  location of the  deployed  minefield. Figure 2 
shows  the pattern of deployed mines and their  burial depth. 
Note  that at the first, second, third, and sixth  row the M20 
anti-tank mines (shown in Figs. 3-4) are deployed. The row 
4 contains an  unknown  type  of plastic mine  which cannot be 
detected by SAR.  Also,  the  row 5 includes smaller M12 
anti-tank  mines  which, due to their small size, are not 
detectable. In  the following, we only concentrate on the 
detection  of M20 anti-tank  mines.  Note that, given their size 
(Fig. 3) and  SRI  SAR 80cmx80cm resolution, the M20 anti- 
tank  mines represent subpixel targets. 

Figures 5 and 6 show the VV and  HH magnitude 
polarization of radar image.  The  bright spots at the  upper 
left  and  lower  right corners of these  images indicate the 
ground reflectors deployed in this experiment to better 
identify  and  register  the  location of  the minefield. Also, 
interestingly, the  two  bright and long  lines going across the 
minefield in both  images are due to  the  presence of two 100- 
meter electrical wires  with a diameter of 2.7 mm; one laid on 
the  ground surface and  the  other  buried at 30cm below the 
surface. As  can be seen, only a very  few  of  the M20 anti- 
tank  mines  can be clearly distinguished in these images. In 
fact, these images represent the  typical case of  negative 
signal-to-clutter environment usually encountered in  SAR 
data analysis. 

Figures 7 and 8 show the VV and HH phase polarization of 
radar  image. The only noticeable information in these two 
images are the  phase shift resulting from  long objects, i.e., 
the electrical wires. 

3. JPL AUTOMATIC TARGET 

DETECTION ALGORITHM 

The techniques reported in this paper are  based  on finding 
local  maxima in SAR images. The assumption  is  that a 
detectable target  anomaly  will be associated with one or 
more  of these local  maxima. In general, an image  will  have 
a great  many  local  maxima which do not correspond to 
target anomalies. Not surprisingly, some of these  local 
maxima  seem  to be  much better candidates than others. The 
challenge is  to  find effective algorithms  that  down select a 
local  maximum  which  is a poor candidate and thereby 
eliminate  false positives. Our expcricnce  sccms  to  indicate 
that there is  no single effective algorithm  for  this. However, 
i t  docs appear that a scries of down  sclcction algorithms, 



each by itself  marginally effective, can together be 
moderately effective in selecting good candidates from 
among all the local maxima. 

3.1. Finding All Local  Maxima in  an  Image 

For convenience, an  image is  always  treated to be a real- 
valued  function f on the ZxZ plane of integers. A local 
maxima  is  any  maximal connected subregion R of ZxZ for 
which f assumes a constant value M and f(p)cM for  any 
pixel p adjacent to R. For instance, the  image f may assume 
the constant value 200 on a 3x3 square of pixels and assume 
values  less  than 200 at any of the 16 adjacent pixels 
surrounding this square. This 3x3 square is then a local 
maxima.  In finding local maxima, Z is set to 3, that is, every 
pixel  is compared with its immediate  neighbor in a recursive 
fashion. Most  local  maxima  consist of a single pixel. 
However, adjacent pixels having  the  same  intensity will 
result in local  maximum  that  is  more than one pixel. 

3.2. Removal of Large  Objects 

This kernel  of the algorithm classifies local  maxima in terms 
of  their size and shape by determining the properties of the 
objects. This is done in terms  of  diameter  from one end  to 
the  other  end  of  any object based on the  connectivity of the 
higher  intensity  values. The assumption is that if a local 
maximum corresponds to a peak  having a diameter of a 
given size or larger, then it probably identifies to some 
feature which is too large to be considered as a target 
anomaly. The subregions that make  up large objects are 
tagged  and  the corresponding pixels  are not taken  into 
account in  the later calculations. 

The large object removal  kernel  employs  four parameters 
two for each polarization: a threshold  value  for  HH 
polarization (THLoR ), a threshold  value  for VV polarization 
(TmoR), a diameter value  for HH polarization (DH ), and a 
diameter value for VV polarization (Dv ). The diameter 
values are used to classify the  size of objects . It should be 
emphasized  that  this  kernel  is  compute  intensive as it 
requires the analysis of  every  pixel in connection with its 
neighboring pixels. Therefore, the  threshold  values are used 
to reduce the scope of computation. Note, also, that  the 
signature of large objects and in particular surface objects 
are usually brighter, i.e., they  have a higher  pixel  value. 
Examples of this  phenomena are the  bright signature of 
electrical wires  and  ground reflectors in Figs. 5 and 6.  Note 
that these four independent parameters need to be  optimized 
for each data set since a number of site dependent factors 
(e.g., vegetation, roads, slopes, pipes,  power cables, fences, 
etc.) can influence their optimal  values. 

3.3. Local  Normalization 

This kernel performs a local  analysis of the  retained  local 
maximum. It applies the  following procedures for  every 
retained  local  maximum in both HH  and VV polarized 
images by setting a square window  size of (2n+ 1 ) by (2n+ 1 ) 
centered  at  the  local  maxima. 

Compute the  local  average of the  window: 

avg = the  sum  of  all pixels in the  window / (2n+l) 
0 Compute the local standard deviation of  the  window: 

sigma = the  sum  of SQRT of every pixel - avg 
Compute  the deviation from  the  local average of  the 
local  maxima: 
deviation = (locmax - avg) / sigma 

The calculated deviation for each  pixel in the  window 
becomes  its new magnitude and is  used in the subsequent 
calculations. Note  that the window size, which is determined 
by  n, is one of the parameters that  needs  to be optimized for 
every data set. 

3.4. Thresholding 

Once  the new magnitudes are assigned  to  the pixels as 
described above, this kernel  is  used to eliminate a major 
portions of false positives by excluding all local maxima 
whose  new  magnitude  (i.e., deviation) is  below a certain 
level. This thresholding process is performed  on  both 
normalized HH and  VV polarized images. However, as 
stated before, targets and clutter can  manifest themselves 
quite differently in each polarization. Therefore, two 
independent parameters, TH for HH polarization and Tv for 
VV polarization, are used as threshold  values.  Note  that  the 
two independent parameters, TH and  Tv,  need  to  be 
optimized  for  every data set. 

3.5. Correlating  Multiple  Images 

This kernel  takes  two different SAR  images (HH and VV 
polarized  magnitude)  of  exactly  the same region  and finds 
those  retained  local  maxima  that are common to both 
images. This process  is  referred as correlating the  local 
maxima. 

The assumption is that if there are two retained local 
maxima, one in each image, which are approximately in the 
same location, then this  location  is  much  more likely to 
correspond to a target anomaly and  not to a false positive. 
Note  that  an  exact  match  between  two  images  of  the  same 
area is  unlikely due to a number of inherent factors including 
the way HH and VV polarized data are acquired. That is, the 
signature of  an object might appear in two  images  with  some 
pixel shift. Because  an exact match  is  unlikely, a parameter 
is  introduced  to  take into account the  pixel shift. Using  this 
parameter, called pixel shifi (PS), the  two  images are then 
expanded and superimposed so that  nearby  local  maxima 
overlap. Final thresholding (C,) is  then applied on  the 
combined  image. The resulting image  is a set of local 
maxima  that represent likely targets. Again, the parameters, 
PS and  C,,,,  need to be optimized for each data set. 

3.6. Parameters  Optimization 

The algorithm described above utilizes eight independent 
parameters (THLOR,  TVLOR, DH, Dv,  TH,  Tv, PS, and Ctd to 
achieve the  best possible result in target detection. Using a 
set of ground  truth data (i.e., known UXOs) for  any  given 
site, these  parameters  can then  be optimized  to  extract 
information as much as possible for analysis of  the  whole 
site. The optimization process is performed by running all 



possible values of the parameters and scoring the  results 
against  the  ground  truth data. 

For Yuma data set, a target file consisting of  all  the  mines  on 
the first, second, third, and sixth  rows  has  been generated. 
Appropriate range of values  has then  been  identified  for 
each parameter. The algorithm was  then  run  with  all 
possible cases covering the  range  of  values  of  parameters. 
This optimization process, due to its  inherent combinatorial 
nature, is  extremely compute-intensive. In fact, for Yuma 
data set, it involved on the order of 50,000 cases to 
determine the  best  combination of parameters. On a typical 
workstation, this  optimization  might  have  taken  weeks to be 
completed. In order to achieve a fast turnaround  time a 
highly  parallel architecture, Linux-based BEOWULF with 
32 processor nodes, was used. By exploiting the  computing 
power of this architecture and  the data parallel  nature of the 
optimization (i.e., each processor can  independently run a 
subset of cases), a very  fast  turnaround  time  of less than a 
day  was  achieved. 

4. RESULTS OF MINE DETECTION 

USING  YUMA  SAR  DATA SET 

In  this  section, we discuss the  results of optimized  algorithm 
for detection  of  anti-tank  mines by using  the  Yuma  Proving 
Ground S A R  data set. Figures 9 shows the resulting image 
from  the application of our algorithm to  the  minefield 
without  applying  Large Objects Removal kernel. Although, 
a significant  reduction in clutter has  been achieved, the large 
objects (i.e., electrical wires  and  ground reflectors) are still 
present in the  image.  Figure 10 shows  the results with Large 
Objects Removal. As can  be  seen in Fig. 10, the  large 
objects have  been  successfully  eliminated  from  the  image. 

Figure 1 1  shows  the pattern of  anti-tank  mines  laid on the 
first row. Figure 12 shows  the  pattern  of resulting anomalies 
(both targets and false positives). Figure 13 shows  the 
impact of only one parameter, the final parameter Cth, while 
keeping all  other parameters fixed at their  optimum  values, 
on the  detection rate of the algorithm for  first  row. The key 
point  is  that,  using  our parameterization, it is possible to 
optimize the algorithm so that  maximum  target detection 
with  minimum false positives and  misses  can be achieved. 
Note  that, as our experiments with  this data set  have  shown, 
such  target detection rate cannot be  achieved by just 
applying a simple  thresholding as proposed in [5]. 

Figure 14 shows  the  pattern  of  anti-tank  mines  laid on  the 
third  row.  Figure 15 shows  the  pattern  of  resulting anomalies 
(both targets and false positives). Figure 16 shows  the 
impact of only  one parameter, the  final  parameter Crh, while 
keeping  all  other  parameters  fixed  at  their  optimum  values, 
on  the  detection  rate of  the algorithm for the  third  row.  As 
can  be  seen  and  compared  with  the  first  row, a much better 
result in  terms of target dctcction with minimum false 
positives and misses  has been achieved. This better  result 
can be attributed t o  the  fact  that  the signature of the 

electrical wires does not strongly interfere with the  third 
row. Similarly, the signature of  the electrical wires does not 
interfere with  the  sixth  row  leading  to comparable results as 
those of the  third  row. Figures 17- 19 show the results for 
the  sixth  row. 

5. CONCLUSION 

In this paper we presented a novel  algorithm  for detection of 
subpixel targets in highly  negative signal-to-clutter ratio 
environment by using airborne, ground penetrating SAR 
data. The fact that airborne, ground penetrating, SAR  has 
not  previously  been successful in subsurface UXO detection 
can  be  mainly  attributed to the  lack of adequate processing 
technique. Traditionally, simple thresholding is applied to 
either HH or VV polarized data. The first drawback of this 
approach is that, in a negative signal-to-clutter ratio 
environment, only  the strongest targets with a large number 
of false positives can be detected. The second drawback is 
that  of  using  only one image is that it does not allow the 
extraction of  maximum  information possible by multiple 
images.  In contrast, our parameterized technique including 
correlation, allows exploitation of dual polarized data with a 
much better optimization for target detection with  minimum 
false positives and misses. 

We are currently improving and enhancing the technique 
discussed in this  paper. In particular, there has  not  yet  been 
any proposed technique for exploitation of information 
provided by the  SAR  phase  images. We strongly believe that 
phase images can  be effective in improving  our results. 
However, the challenge is in the development of adequate 
techniques for extraction of  information  from phase images. 
We are currently investigating new techniques for 
processing of phase  images by using  wavelet  transforms. 
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Figure 1: Aerial photo of Philips  Drop Zone at Yuma Proving  Ground,  Arizona.  The  rectangle in 
the upper right corner  denote the minefield. 
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Figure 2: Location  and  pattern of mines  and  mine types buried in the minefield. 



Figure 3: M20 Anti-tank mine 
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Figure 4: M20 Anti-tank mine schematics 



Figure 5: VV Magnitude  Polarization of the  radar  image of the  minefield. 



Figure 7: VV Phase Polarization of the radar image of the minefield. 

Figure 8: HH Phase Polarization of' rhe radar imagc of the minefield. 



Figure 9: The  pattern of mines  resulting  from  the  application of post processing 
algorithm  to  the  whole  grid  without  first  applying  the  Large  Object 
Remo\.aI (LOR)  algorithm. 



Figure 11: The pattern of mines laid out on the first row  in the  minefield. 

Figure 12: Signature of M20 mines at a depth of 6 inches  below  surface  resulting from the 
application of post processing algorithm on the first row. 

UXO Detection  Algorithm  Results for Row 1 
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Figure 13: Detection Rate vs. Combined Image Threshold. Notice how number of False Positives 
and Hits decrease and Misses increase as threshold values increase. The optimal value 
is  when Hits is ut maximum and  False Positives and Misses are at minimum which 
intersect ut around combined threshold value o f  175.0. 
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Figure 14: The pattern  of mines laid out on  the  third  row in the minefield. 

Figure 15: Signature of M20 mines at a depth of 6 inches below surface resulting from  the 
application of post processing algorithm on the third row. 

UXO Detection  Algorithm Results for Row 3 
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Figure 16: Detection Rate vs. Combined Image Threshold. Notice how number of False Positives 
and  Hits decrease and Misses increase  as  threshold  values increase. The optimal value 
is  when Hits is at maximum and  False  Positives  and  Misses  are  at minimum which 
intersect at around combined threshold  value of 174.0. 
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Figure 17: The pattern of mines laid out on the sixth row in the minefield. 

Figure 18: Signature of M20 mines just below surface  resulting from the  application of post 
processing  algorithm on the  sixth row. 

UXO Detection  Results for Row 6 
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Figure 19: Detection Rate vs. Combined Image Threshold. Notice how number of False Positives 
and Hits decrease and Misses increase as threshold values increase. The optimal value 
is  when  Hits  is at maximum and False Positives and Misses are at minimum which 
intersect at around combined threshold value of 175.0. 


